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Abstract

We consider the infinite time-horizon optimal basket portfolio liquidation problem for a von Neumann-
Morgenstern investor in a multi-asset extension of the liquidity model of Almgren (2003) with cross-asset
impact. Using a stochastic control approach, we establish a “separation theorem”: the sequence of portfolios
held during an optimal liquidation depends only on the (co-)variance and (cross-asset) market impact of the
assets, while the speed with which these portfolios are attained depends only on the utility function of the
trader. We derive partial differential equations for both the sequence of attained portfolios and the trading
speed.
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1 Introduction

Investors frequently wish to trade several assets simultaneously. For example, rebalancing an index tracking
fund may require trading in several hundred different shares. Optimal execution of such a basket trade depends
not only on the (co-)variances of the assets, but also on the (cross-asset) price impact of trading. Our goal in
this paper is to determine the utility maximizing trading strategy for such basket liquidations with respect to a
wide range of utility functions and describe it as the solution to a partial differential equation. We find that the
set of portfolios that are held during the liquidation is independent of the investor’s utility function but only
depends on the market volatility and liquidity structure. The utility function only influences how quickly the
investor executes the trades.

For practical applications, we can determine the utility maximizing trading strategy by executing two steps.
First, we derive the deterministic mean-variance optimal basket trading strategy. While we show that such a
strategy always exists, finding it numerically can be challenging due to the high number of dimensions. Second,
we solve a partial differential equation and obtain an optimal “relative trading speed”. This PDE depends
only on the risk aversion of the utility function, but not on the market parameters such as the covariance
structure. Under the utility maximizing trading strategy, the portfolio evolves exactly as in the mean-variance
optimal trading strategy, but with a time transformation given by the relative trading speed. This establishes a
“separation theorem” for optimal liquidation: Investors with different risk attitudes will choose the same basket
liquidation strategy, but execute it at a different speed. Because of this separation, utility maximization becomes
a numerically tractable option for implementing adaptive basket liquidation strategies in practice.

We consider a continuous-time, infinite time-horizon multiple asset extension of the model introduced by
Almgren and Chriss (2001) and Almgren (2003). In particular, we allow for non-linear cross-asset price impacts.
However, we need to assume that price impact scales like a power law, i.e., that trading a times faster results in
a price impact multiplied by aα where α > 0 is a constant. In this market model, we first show that a unique
mean-variance optimal trading strategy exists and that it satisfies both Bellman’s principle of optimality and the
Beltrami identity. Furthermore, the mean-variance costs of liquidation fulfil the dynamic programming PDE.
Thereafter, we construct a solution to the HJB equation for utility maximization. The key observation is that
the expected utility under optimal adaptive liquidation is identical for different portfolios with the same mean-
variance cost of deterministic execution. We can therefore construct the utility maximization value function by
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solving two-dimensional PDEs instead of high-dimensional PDEs. Finally we apply a verification argument to
show that the solution to the HJB equation is indeed the value function.

Building on empirical investigations of the market impact of large transactions, a number of theoretical
models of illiquid markets have emerged. One part of these models focuses on the underlying mechanisms for
illiquidity effects, e.g., Kyle (1985) and Easley and O’Hara (1987). We follow a second line that takes the
liquidity effects as given and derives optimal trading strategies within such a stylized model market. Several
market models have been proposed for this purpose, e.g., Bertsimas and Lo (1998), Almgren and Chriss (2001),
Almgren (2003), Obizhaeva and Wang (2006) and Alfonsi, Fruth, and Schied (2010). While the advantages
and disadvantages of these models are still a topic of ongoing research, we apply an n-dimensional extension
of the market model introduced by Almgren (2003) in this paper for the following reasons. First, it captures
both the permanent and temporary price impacts of large trades, while being sufficiently simple to allow for
a mathematical analysis. It has thus become the basis of several theoretical studies, e.g,. Rogers and Singh
(2010), Almgren and Lorenz (2007), Carlin, Lobo, and Viswanathan (2007) and Schöneborn and Schied (2009).
Second, it demonstrated reasonable properties in real world applications and serves as the basis of many optimal
execution methodologies run by practitioners (see e.g., Kissell and Glantz (2003), Schack (2004), Abramowitz
(2006), Simmonds (2007) and Leinweber (2007)).

Within the optimal liquidation literature, most research was directed to finding the optimal deterministic
or static liquidation strategy1. Only recently, academic research has started to investigate the optimization
potential of adaptive strategies. Both Almgren and Lorenz (2007) and Schied and Schöneborn (2009) consider the
special case of a single asset with linear price impact. Almgren and Lorenz (2007) analyse mean-variance traders
in this setting and find that these always follow aggressive-in-the-money strategies, i.e., they accelerate trading
after beneficial price moves and slow trading down after adverse price movements. Schied and Schöneborn (2009)
derive optimal trading strategies for utility maximizing investors and can explain both aggressive-in-the-money
and passive-in-the-money strategies. Their solution is a special case of the solution presented in this paper,
however derived in a different way: They directly derive the optimal adaptive trading strategy without referring
to mean-variance optimization. To our knowledge, the only paper so far considering adaptive liquidation of
baskets is Schied, Schöneborn, and Tehranchi (2010). They limit the analysis to utility maximizing investors
with an exponential (CARA) utility function and find that adaptive strategies offer no optimization benefit for
this class of investors irrespective of any finite liquidation time horizon. For an infinite time horizon, we obtain
this finding as a special case.

The rest of this paper is structured as follows. In Section 2, we introduce the multiple asset market model.
The investor’s trading target is discussed in Section 3. Thereafter, we first show in Section 4 that an optimal
deterministic strategy exists for mean-variance optimization and subsequently use this strategy to construct the
optimal strategy for utility maximization in Section 5. All proofs are given in Appendix A.

2 Market model

We assume that there are n ≥ 1 risky assets and a risk-free asset traded. In this market, we consider a large
investor who needs to liquidate a basket portfolio X0 = (X1

0 , . . . , X
n
0 ) ∈ Rn of shares in the n risky assets by

time T > 0. The investor chooses a liquidation strategy that we describe by the portfolio Xt ∈ Rn held at time
t and that satisfies the boundary condition XT = 0. We assume that t 7→ Xt is absolutely continuous with
derivative Ẋt =: −ξt, i.e.,

Xt = X0 −
∫ t

0

ξs ds.

For questions such as hedging derivatives, the restriction to absolutely continuous strategies is severe, since it
excludes for example the Black-Scholes hedging strategy. For an analysis of optimal liquidation strategies, the
restriction appears less grave, since reasonable optimal strategies can be expected to have bounded variation.2

Due to insufficient liquidity, the investor’s trading rate ξt is moving the market prices. We consider an n-
dimensional extension of the model introduced by Almgren (2003) (see also Bertsimas and Lo (1998), Almgren

1Notable exceptions describing optimal adaptive strategies include Subramanian and Jarrow (2001), He and Mamaysky (2005),
Almgren and Lorenz (2007) and Çetin and Rogers (2007).

2Nevertheless, it would be desirable to allow block trades, i.e., jumps in Xt. Analyses of models that allow for such block trades
(e.g., Obizhaeva and Wang (2006) and Alfonsi, Fruth, and Schied (2010)) reveal that for realistic parameters the optimal trading
strategy is absolutely continuous except for very small block trades at the beginning and end of trading. Numerically, the optimal
strategy is almost unchanged by the provision of block trades. Unfortunately, allowing for block trades significantly complicates
the mathematical analysis. We therefore believe that it is acceptable to limit the discussion to absolutely continuous strategies.
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and Chriss (1999) and Almgren and Chriss (2001) for discrete-time precursors of this model). The transaction
price vector Pt ∈ Rn in this model is the difference of the fundamental price P̃t ∈ Rn and the price impact
Impt((ξs)0≤s≤t) ∈ Rn:

Pt = P̃t − Impt((ξs)0≤s≤t).

The multi-asset price impact Impt is assumed to be of the following special form:

Impt((ξs)0≤s≤t) :=

∫ t

0

PermImp(ξs)ds+ TempImp(ξt) ∈ Rn.

The incremental order ξt therefore induces both a permanent and a temporary impact on market prices. The
permanent impact PermImp : Rn → Rn accumulates over time and is assumed to be linear:

PermImp(ξ) := Γξ

where Γ = (Γij) ∈ Rn×n is a symmetric n × n matrix. Linearity and symmetry of the permanent impact
are necessary to rule out quasi-arbitrage opportunities as was observed by Huberman and Stanzl (2004). The
temporary impact TempImp : Rn → Rn vanishes instantaneously and thus only affects the incremental order ξt
itself. It is a possibly non-linear function. The idealization of instantaneous recovery of the temporary impact is
derived from the well-known resilience of stock prices after order placement. It approximates reality reasonably
well as long as the time intervals between the physical placement of orders are longer than a few minutes. See,
e.g., Bouchaud, Gefen, Potters, and Wyart (2004), Potters and Bouchaud (2003), and Weber and Rosenow
(2005) for empirical studies on resilience in order books and Obizhaeva and Wang (2006), Alfonsi, Fruth, and
Schied (2008) and Alfonsi, Fruth, and Schied (2010) for corresponding market impact models.

This model provides a high degree of analytical tractability while still being sufficiently flexible to capture
the relevant aspects of both the permanent and temporary price impacts of large trades. It is to our knowledge
the only liquidity model that has become the basis of theoretical studies not only on the topic it was designed
for (optimal portfolio liquidation), but also on several other topics such as hedging (Rogers and Singh (2010)),
investment decision and implementation (Engle and Ferstenberg (2007)) and on the interaction of market partic-
ipants in illiquid markets (Carlin, Lobo, and Viswanathan (2007), Schöneborn and Schied (2009)). Furthermore,
it demonstrated reasonable properties in real world applications.

When the large investor is not active, it is assumed that the fundamental price process P̃ follows an n-
dimensional Bachelier model. The resulting vector-valued transaction price dynamics are hence given by

Pt = P̃0 + σBt + Γ(Xt −X0)− TempImp(ξt).

Equivalently, the transaction price for the ith asset is given by

P it = P̃ i0 +

n∑
j=1

σijBjt +

n∑
j=1

Γij(Xj
t −X

j
0)− TempImpi(ξt);

for an initial fundamental price vector P̃0 ∈ Rn, a standard n-dimensional Brownian motion B starting at
B0 = 0, and a n× n volatility matrix σ = (σij) ∈ Rn×n. We assume that σ is non-degenerate with covariance
matrix Σ := σσ> ∈ Rn×n. At first sight, it might seem to be a shortcoming of this model that it allows for
negative asset prices. But on the scale we are considering, the price process is a random walk on an equidistant
lattice and thus perhaps better approximated by an arithmetic rather than, e.g., a geometric Brownian motion.

Note that we assumed that the stock has no drift. Almgren and Chriss (2001) found that if the temporary
impact is linear, then the effect of a non-zero drift can be separated from the problem of optimal liquidation.
More precisely, the optimal strategy in a market with drift is the sum of two strategies. The first of these
strategies is the optimal liquidation strategy in the same market but with zero drift. The second strategy is
the optimal strategy in the market with drift, but with a zero initial asset position. This second strategy in
fact exploits the knowledge about the future drift to make a profit. It is however completely independent of the
original liquidation problem; we therefore neglect it in this analysis of optimal liquidation and focus on the first
strategy, which can be computed under the assumption of zero drift. Mathematically, the assumption of zero
drift is necessary since we will consider liquidations over infinite time horizons, and only in the absence of drift
can we expect an investor to actually liquidate a portfolio without a finite time constraint.3

3In the case of non-zero drift we can expect an investor to target a non-zero portfolio that will use the drift information to
generate positive returns. While trading towards this target portfolio, in certain cases the investor may momentarily hold a zero
portflio, but will subsequently continue trading towards the non-zero target portfolio.
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In the following, we will not be concerned with P itself, but with the proceeds P>ξ of trading. Several
different functions TempImp : Rn → Rn have the same effect on P>ξ. For example, in the two asset case the
temporary impact functions TempImp(ξ) and

˜TempImp(ξ) := TempImp(ξ) + ξ>
(

0 1
−1 0

)
give the same proceeds P>ξ. We will therefore not specify TempImp, but instead will work directly with the
“temporary impact cost of trading”

f : ξ ∈ Rn → f(ξ) := TempImp(ξ)>ξ ∈ R+
0 .

We assume that f is C1 on Rn, and that it is C2 and larger than zero on Rn\{0}. Furthermore, we require
that f has a positive-definite Hessian matrix D2f on Rn\{0}, or equivalently that is has a non-singular Hessian
matrix and is convex. Additionally, we need to assume that f scales like a power law in the trading speed ξ.
More precisely, we assume that there is a constant α ∈ R+ such that for all r ∈ R+

0 :

f(rξ) = rα+1f(ξ). (1)

Note that this implies f(0) = 0. Irrespective of the choice of α, a higher trading speed will result in faster
liquidation and an increased temporary impact cost of trading. E.g., if α = 1, then doubling the trading speed
will increase the temporary impact cost by a factor of 2 per unit traded. For a discussion of the relevance of
the scaling property, see the remark after Theorem 5.2.

Several market models fit into our framework. The non-linear temporary impact models for a single asset
discussed by Almgren (2003) and statistically estimated by Almgren, Thum, Hauptmann, and Li (2005) cor-
respond to f(ξ) = λξβ . For multiple assets, the linear model introduced by Almgren and Chriss (2001) and
analysed by Konishi and Makimoto (2001) can be realized in our framework by setting f(ξ) = ξ>Λξ with a
matrix Λ ∈ Rn×n. A non-linear version of this model is given by f(ξ) = (ξ>Λξ)β . Many other model choices
fulfil our assumptions.4

We assume that ξ is progressively measurable with respect to a filtration in which B is a Brownian motion,
that

∫∞
0
f(ξt)dt <∞ and that each component of the resulting portfolio Xξ

t (ω) is bounded uniformly in t and
ω with upper and lower bounds that may depend on the choice of ξ. Note that strategies are allowed to (at
least temporarily) increase positions as well as to change the sign of positions (e.g., turn a long position in a
given asset into a short position). Furthermore they are not required to reach a zero position at any point in
time.

In the following we assume that the investor is a von-Neumann-Morgenstern investor with a utility function
u : R→ R with absolute risk aversion A(M) that is bounded away from zero and infinity:

A(M) := −uMM (M)

uM (M)

0 < inf
M∈R

A(M) =: Amin ≤ sup
M∈R

A(M) =: Amax <∞

Furthermore, we assume that the utility function u is sufficiently smooth (C6).5

3 Investor’s optimal liquidation objective

We now define the problem of optimal liquidation in the illiquid market model. We consider a large investor
who needs to sell a position of X0 shares of a risky asset and already holds m units of cash. When following a

4Examples includef((ξ(1),ξ(2))
>) = ξ6

(1) +ξ4
(1)ξ

2
(2) +ξ2

(1)ξ
4
(2) +ξ6

(2) and f((ξ(1),ξ(2))
>) = (ξ2

(1) +ξ2
(2)) exp(ξ2

(1)/(ξ
2
(1) +ξ2

(2))).
5We will use that u is C4 (i.e., A is C2) in several central definitions and statements. E.g., in Theorem 5.2, we rely on the

existence of ãMM where ã(0,M) = A(M)
1

α+1 . We will use the stronger assumption of u being C6 to show the smoothness of w̃ in
Proposition A.10, which in turn is required for Equation 49 in Proposition A.11.
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trading strategy ξ, the investor’s total cash position is given by

Mt(ξ) = m+

∫ t

0

Psξs ds

= m+ P̃0X0 −
1

2
(X0)>ΓX0 +

∫ t

0

(Xξ
s )>σ dBs︸ ︷︷ ︸
Φt

−
∫ t

0

f(ξs) ds

−P̃0Xξ
t −

1

2

(
(Xξ

t )>ΓXξ
t − 2(X0)>ΓXξ

t

)
− (Xξ

t )>σBt︸ ︷︷ ︸
Ψt

.

We neglect the accumulation of interest.6 It is not clear a priori that this is acceptable, since over long time
horizons a positive interest rate could potentially have a significant impact on wealth dynamics. We will see that
even without interest, the asset position decreases quickly under the optimal trading strategy. Incorporating
a positive interest rate will lead to an even faster decrease of the asset position; however, due to the already
fast exponential liquidation, only small changes to the optimal trading strategy are expected for reasonable
parameters.

Since the large investor intends to sell the asset position, we expect the liquidation proceeds to converge
P-a.s. to a (possibly infinite) limit as t→∞. Convergence of Φt follows if

E
[ ∫ ∞

0

(Xξ
s )>ΣXξ

s ds
]
<∞ (2)

and a.s. convergence of Ψt is guaranteed if a.s.

lim
t→∞

(Xξ
t )>ΣXξ

t t ln ln t = 0. (3)

We will regard strategies admissible if they satisfy the preceding two conditions in addition to the assumptions
in Section 2. By X we denote the class of all admissible strategies ξ; for notational simplicity, we will not make
the dependence on X0 explicit.7 Setting

Mξ
t = m+ P̃0X0 −

1

2
(X0)>ΓX0︸ ︷︷ ︸

M0

+

∫ t

0

(Xξ
s )>σ dBs −

∫ t

0

f(ξs) ds, (4)

for ξ ∈ X we then have

Mξ
∞ := lim

t→∞
Mt(ξ). (5)

All of the five terms adding up to Mξ
t can be interpreted economically. The number m is simply the initial cash

endowment of the investor. P̃0X0 is the face value of the initial position. The term 1
2 (X0)>ΓX0 corresponds

to the liquidation costs resulting from the permanent price impact of ξ. Due to the linearity of the permanent
impact function, it is independent of the choice of the liquidation strategy. The stochastic integral corresponds
to the volatility risk that is accumulated by selling throughout the interval [0,∞[ rather than liquidating the
portfolio instantaneously. The integral

∫∞
0
f(ξs) ds corresponds to the transaction costs arising from temporary

market impact.
We assume that the investor wants to maximize the expected utility of her cash position after liquidation:8

v(X0,M0) := sup
ξ∈X

E[u(Mξ
∞)] = sup

ξ∈X
E[u(Mξ

∞)]. (6)

6Similarly we disregard any income or expenditure related to securities lending. If lending asset generates the same income as
interest then these two effects can cancel out even if assumed to be non-zero.

7X contains adapted strategies that respond dynamically to changes in market prices. In Section 4, we will introduce the set
X̄ ⊂ X of deterministic admissible strategies.

8Alternatively, the maximisation of limt→∞ E[u(Mξ
t )] can be considered, for which the constraints of Equations (2) and (3) can

be dropped.
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4 Deterministic strategies and mean-variance optimization

Before considering the dynamic maximization of expected utility, we start our analysis with deterministic mean-
variance optimization. Let X̄ ⊂ X be the set of deterministic admissible strategies. We consider the mean-
variance value function9:

v̄(X0) := inf
ξ̄∈X̄

[∫ ∞
0

f(ξ̄s)ds+
1

2

∫ ∞
0

(Xξ̄
s )>ΣXξ̄

sds

]
. (7)

Mean-variance optimisation has frequently been studied in its own right. In the following section, we will use
deterministic mean-variance optimal strategies to construct optimal dynamic strategies for utility maximisation
and thus reveal an underlying connection between these seemingly different modelling approaches. The following
theorem establishes the existence of an optimal trading strategy ξ̄ and provides some of its features.

Theorem 4.1. For each X0 ∈ Rn, there is a unique minimizer ξ̄
(X0)

of Equation (7). This minimizer satisfies
Bellman’s principle of optimality, i.e., there is a continuous vector field

ā : X ∈ Rn → ā(X) ∈ Rn

such that for all X0 ∈ Rn and each t ∈ R0, we have

ξ̄
(X0)
t = ā

(
Xξ̄

(X0)

t

)
.

Furthermore, the vector field ā fulfils the following two equations:

∇f(ā(X)) = v̄X for all X ∈ Rn (8)

f(ā(X))

X>ΣX
=

1

2α
for all X ∈ Rn\{0}. (9)

Equation (8) is the dynamic programming PDE (see Cesari (1983)) and Equation (9) is the Beltrami identity
(see Beltrami (1868) or Weisstein (2002)). The proof of Theorem 4.1 first investigates deterministic mean-
variance liquidation strategies for a finite liquidation time horizon T ; the results for the infinite time horizon
problem (7) are subsequently derived by considering T →∞.

For special cases, the vector field ā and the mean-variance value function v̄ are available in closed form. For
the single asset case with non-linear temporary impact f(ξ) = λξα+1, Almgren (2003) derived

ā(X) =

(
σ2X2

2αλ

) 1
α+1

v̄(X) =
(α+ 1)2

3α+ 1

(
λσ2αX3α+1

(2α)α

) 1
α+1

. (10)

For the multiple asset case, it is harder to find a closed form expression for ā. However, if the temporary impact
is linear, i.e., f(ξ) = ξ>Λξ, Λ is a diagonal matrix and Λ−1Σ has n different positive eigenvalues, then it is easy
to derive from the formulas in Konishi and Makimoto (2001) that

ā(X) =
1√
2

√
Λ−1ΣX (11)

v̄(X) =
1√
2

X>Σ
√

Σ−1ΛX. (12)

It is straightforward to verify that the closed form expressions of Equations (10), (11) and (12) are consistent
with Theorem 4.1.

Figures 1 and 2 illustrate the trajectories of the optimal deterministic trading strategies in the case of two
positively correlated assets with covariance matrix

Σ =

(
1 0.5

0.5 1

)
.

9More precisely, the function v̄ is a simple transformation of the mean-variance value function.
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In Figure 1, the trajectories for different portfolios X0 are compared for fixed

Λ =

(
1 0
0 1

)
.

The correlation of the two assets connects the trading in both assets by the investor’s desire to reduce portfolio
risk by hedging. If the initial asset position in one of the assets is zero, it will not remain zero during the
portfolio liquidation; instead, a long or short position is acquired that serves as a hedge for the initial non-zero
position in the other asset. For the same reason, a portfolio with long positions in both assets might have a
short position in one of the two assets during the optimal liquidation. This short position again serves as a
hedge for the long position in the other asset; under certain conditions, it is cheaper to reduce risk by building
up the short position as a hedge instead of by selling the long position quicker. For two example portfolios

X0 =

(
±1
1.5

)
,

the trajectories for different temporary impact matrices

Λ =

(
1 0
0 d2

)
with d2 ∈ [e−3, e3] are shown in Figure 2. The larger the differences in liquidity of the two assets, the larger the
incentive to hedge the market risk by trading the more liquid asset quicker than the less liquid asset. For the
portfolio

X0 =

(
1

1.5

)
,

this effect is strong, since the initial portfolio market risk is high; for the portfolio

X0 =

(
−1
1.5

)
,

the market risk is low already at the beginning of trading and thus the optimal trading trajectories are similar
for different temporary impact matrices Λ.10

As can be seen from these pictures, in some cases it can be optimal to temporarily increase the initial position
in one of the assets. In other cases, it is best to turn an initial long position into a short position (or vice versa).
Furthermore the optimal strategies never complete liquidation in a finite time horizon; instead they converge
towards a zero portfolio over time (without ever reaching it).

5 Dynamic maximization of expected utility

We now turn to the dynamic maximization of expected utility.

Theorem 5.1. The value function v is a classical solution of the Hamilton-Jacobi-Bellman equation

inf
a

[
−1

2
vMMX>ΣX + vMf(a) + vXa

]
= 0 (13)

with boundary condition
v(0,M) = u(M) for all M ∈ R. (14)

The a.s. unique optimal control ξ̂t is Markovian. We write it in feedback form as

ξ̂t = a(Xξ̂
t ,M

ξ̂
t ). (15)

For the value function, we have convergence:

v(X0,M0) = lim
t→∞

E[u(M ξ̂
t )] = E[u(M ξ̂

∞)].

10For the specific choice of price impact cost function f made in Figures 1 and 2, the liquidation direction converges to the last
eigenvector of

√
Λ−1Σ. In Figure 1, this is the vector (−1, 1). In Figure 2, the vector depends on d2: For d2 = 1 we obtain the

same asymptote (−1, 1), for d2 →∞ it is (−0.5, 1) and for d2 → 0 it is (1,−0.5). Note that the execution trajectories for different
values of d2 can intersect each other.
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-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Position in Asset 1

Position in Asset 2

Figure 1: Parametric plot of the portfolio trajectories Xξ̄
(X0)

t under the mean-variance optimal deterministic
strategy for different initial portfolios X0. Λ = ((1, 0), (0, 1)), Σ = ((1, 0.5), (0.5, 1)).

-1.0 -0.5 0.5 1.0

0.5

1.0

1.5

Position in Asset 1

Position in Asset 2

Figure 2: Parametric plot of the portfolio trajectories Xξ̄
(X0)

t under the mean-variance optimal deterministic
strategy for two different initial portfolios X0 and different temporary impact matrices Λ = ((1, 0), (0, d2)).
Darker lines correspond to d2 closer to 1. Σ = ((1, 0.5), (0.5, 1)). The dots show the portfolio Xti at time points
ti = i/2 for i ∈ N.
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Note that in Equation (13) and in the rest of this chapter, we use the shorthand notation vX = ∇Xv. Once
we have a candidate value function (and optimal strategy) satisfying Equation 13, the proof of Theorem 5.1
is a (non-standard) verification argument. But the existence of a solution to the HJB Equation (13) is far
from obvious; even for the simple integration of vector fields in Rn × {0}, integration conditions need to be
fulfilled. Fortunately, the construction of the optimal control a and the value function v can be reduced to a
two-dimensional problem involving only the portfolio value M and the mean-variance liquidation cost Y = v̄(X).

Theorem 5.2. The optimal control a is given by

a(X,M) = ã(v̄(X),M)ā(X)

with a “relative liquidation speed” function ã : (Y,M) ∈ R+
0 × R → ã(Y,M) ∈ R+ that is the unique classical

solution of the fully non-linear parabolic PDE

ãY = −2α+ 1

α+ 1
ãαãM +

α(α− 1)

α+ 1

(
ãM
ã

)2

+
α

α+ 1

ãMM

ã
(16)

with initial condition
ã(0,M) = A(M)

1
α+1 . (17)

The bounds of the absolute risk aversion determine bounds of the relative liquidation speed ã:

inf
(Y,M)∈R+

0 ×R
ã(Y,M) = inf

M∈R
ã(0,M) =: ãmin = (Amin)

1
α+1

sup
(Y,M)∈R+

0 ×R
ã(Y,M) = sup

M∈R
ã(0,M) =: ãmax = (Amax)

1
α+1 .

For α = 1, Equations (16) and (17) describing the relative liquidation speed ã are a special case of Equa-
tions (21) and (22) for the transformed optimal control in Schied and Schöneborn (2009) with λ = 1 and
σ2 = 2.11

While the “Separation Theorem” 5.2 might feel surprising, it is possible to interpret it intuitively in light
of previous results on optimal liquidation. First, Schied and Schöneborn (2009) show that general utility
maximizing investors liquidate single asset positions similar to CARA investors with a risk aversion level that is a
weighted average of the risk aversion at possible outcomes of the liquidation value. Second, Schied, Schöneborn,
and Tehranchi (2010) show that investors with a CARA utility function in turn behave like mean variance
investors when liquidating a basket portfolio over a finite time horizon in a market with linear price impact.
Theorem 5.2 confirms that both of these connections also hold for basket liquidation over an infinite time horizon
with general price impact and general utility functions.

The necessity of the scaling property (Equation (1)) can be understood when considering the simplest case
of power law price impact for uncorrelated assets with no cross-asset price impact. If the power law exponent
for the price impact of the ith asset is αi, then the existing literature suggests that the optimal liquidation

speed for the ith asset scales as A
1

αi+1 in the level of risk aversion A. For the Separation Theorem to hold, we
need the ratio of the liquidation speeds in any two assets i and j to be independent of the level of risk aversion
A, i.e., we need αi = αj , which in turn is equivalent to the scaling property. Theorem 5.2 establishes that the
scaling property is not only necessary but also sufficient.

Because of Theorem 5.2, utility maximization becomes numerically achievable for practical applications.
Bertsimas, Hummel, and Lo (1999) find that even the minimization of expected liquidation costs is numerically
challenging for large portfolios. While mean-variance optimal liquidation is by now a standard service of many
banks, a utility maximizing dynamic liquidation by brute-force methods of dynamic programming appears out
of reach. By Theorem 5.2, such a brute-force approach is fortunately not necessary.

Theorem 5.3. The value function is given by

v(X,M) = ṽ(v̄(X),M)

11Note that here the relative liquidation speed ã describes the length of the utility-maximizing control a with respect to the
length of the mean-variance optimal control ā, while the transformed optimal control c̃ in Schied and Schöneborn (2009) described
the magnitude of c with respect to the portfolio size X. For α = 1 as in the linear model of Schied and Schöneborn (2009), portfolio
size X and mean-variance optimal trading speed ā are proportional; this is not necessarily the case for α 6= 1.

9
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Figure 3: Two sample optimal execution paths Xξ̂
t corresponding to different paths of the Brownian motion

Bt. The inset shows the corresponding evolution of the variable Mt. Black lines represent the first scenario
and grey lines the second; solid lines represent the first asset while dashed lines represent the second asset.
Parameters are Σ = ((1, 0.5), (0.5, 1)), Λ = ((0.3, 0), (0, 6)), X0 = (−1, 1), P0 = (100, 100), M0 = 100 and the
utility function with absolute risk aversion A(M) = 2.4 + 2 tanh(10(M − 97)). 2000 simulation steps were used
covering the time span [0, 5].

with a function ṽ : (Y,M) ∈ R+
0 × R→ ṽ(Y,M) ∈ R that is the unique classical solution of the non-linear first

order PDE
ṽY = −ṽM ãα (18)

with initial condition
ṽ(0,M) = u(M). (19)

Theorems 5.2 and 5.3 reveal a tight connection between mean-variance optimization and maximization of
expected utility. Both approaches lead to the same liquidation strategy, they only differ by the speed with
which this strategy is executed. The expected utility of optimal liquidation then depends only on the current
portfolio value M and the mean-variance costs of deterministic liquidation v̄(X). The proof of Theorems 5.1, 5.2
and 5.3 is achieved jointly. First, solutions to the PDEs (16) and (18) are established and shown to yield a value
function satisfying the HJB equation (13). Subsequently a verification theorem establishes that this solution to
the HJB equation is indeed the value function.

Corollary 5.4. The asset position Xξ̂
t at time t under the optimal control ξ̂ is given by

Xξ̂
t = Xξ̄∫ t

0
ã(v̄(Xξ̂

s ),M ξ̂
s ) ds

. (20)

This corollary follows since both Xξ̂
t and Xξ̄∫ t

0
ã(v̄(Xξ̂

s ),M ξ̂
s ) ds

satisfy d
dtXt = −ã(v̄(Xt),Mt)ā(Xt). Figure 3

illustrates how liquidations can evolve depending on the utility function and asset price evolutions. The two
examples shown reflect different asset price scenarios. Both examples follow the same portfolio execution
strategy, but executed at different speeds dynamically driven by the random changes in portfolio value. Initially
the positions in both assets get liquidated slower in the first scenario (black lines in the figure) compared to
the second scenario (grey lines), but after t ∼ 0.8 the execution in the first scenario speeds up. Since the same
execution strategy is being followed in both scenarios, this results in the execution of the first scenario catching
up with the second in both assets at the same time t ∼ 1.3.

It is now clear that the features of mean-variance optimal strategies are also exhibited by utility maximising
strategies (e.g. increases in positions, change of sign of positions and gradual convergence to a zero portfolio).
For investors with CARA utility, this connection is particularly strong.

10



Corollary 5.5. For investors with a utility function u(M) = −e−AM with constant absolute risk aversion
A(M) ≡ A, the optimal adaptive liquidation strategy is deterministic and is given by

a(X,M) = A
1

α+1 ā(X) (21)

Xξ̂
t = Xξ̄

A
1

α+1 t
(22)

v(X,M) = − exp
(
−AM +A

2α+1
α+1 v̄(X)

)
(23)

This corollary follows since the strategy and value function proposed in (21) and (23) are the unique solutions
of the PDEs (16) and (18) with their corresponding boundary conditions. For the example discussed in Section 3
(f(ξ) = ξ>Λξ, Λ a diagonal matrix, Λ−1Σ having n different positive eigenvalues), using Equations (11) and (12)
we obtain for investors with CARA utility u(M) = e−AM that12

a(X,M) = A
1

α+1
1√
2

√
Λ−1ΣX (24)

Xξ̂
t = exp

(
−A

1
α+1

1√
2

√
Λ−1Σt

)
X0 (25)

v(X,M) = − exp

(
−AM +A

2α+1
α+1

1√
2

X>Σ
√

Σ−1ΛX

)
. (26)

Since for α = 1 Equations (16) and (17) are a special case of Equations (21) and (22) in Schied and
Schöneborn (2009), all the results of Schied and Schöneborn (2009) that follow from the properties of Equa-
tion (21) carry over to the multiple asset setting when α = 1. Several of them also hold for general α. The
following two propositions exemplify this.

Theorem 5.6. ||a(X,M)|| is increasing (decreasing) in M for all values of X if and only if the absolute risk
aversion A(M) is increasing (decreasing) in M .

If the value of the portfolio rises, then M rises. A strategy with an optimal control a that is increasing in
M (everything else held constant) sells fast in such a scenario, i.e., is aggressive in-the-money; if a is decreasing
in M , it is passive in-the-money, and if a is independent of M , then the strategy is neutral in-the-money. It
follows from the preceding theorem that A(M) determines this characteristic of the optimal strategy:

Utility function Optimal trading strategy
Decreasing absolute risk aversion (DARA) ⇔ Passive in-the-money (PIM)

Constant absolute risk aversion (CARA) ⇔ Neutral in-the-money (NIM)
Increasing absolute risk aversion (IARA) ⇔ Aggressive in-the-money (AIM)

Figure 3 shows example liquidations for a utility function with increasing absolute risk aversion (IARA). As
expected, the execution speeds up whenever M is rising and slows down whenever M is falling.

The proof of Theorem 5.6 crucially relies on the following theorem.

Theorem 5.7. Suppose u0 and u1 are two utility functions such that u1 has a higher absolute risk aversion
than u0, i.e., A1(M) ≥ A0(M) for all M . Then an investor with utility function u1 liquidates the same portfolio
X0 faster than an investor with utility function u0. More precisely, the corresponding optimal strategies satisfy

ã1 ≥ ã0. (27)

The proof of Theorem 5.7 relies on a Feynman-Kac argument.
The “Separation Theorem” 5.2 does not hold for basket liquidations with a finite time horizon T . Let us

consider a simple example of two uncorrelated assets with the same volatility but different liquidity:

Σ =

(
1 0
0 1

)
Λ =

(
1 0
0 10

)
.

12Schied, Schöneborn, and Tehranchi (2010) derive the optimal liquidation strategy and value function for a CARA investor in
the single asset case but with a finite liquidation time horizon T < ∞. As T → ∞, their results converge to the expressions in
Equations 24 to 26.
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Figure 4: Parametric plot of the optimal trading trajectories for a finite liquidation time horizon T for CARA
investors with different levels of absolute risk aversion A ∈ [1, e5] (darker lines correspond to lower risk aversion).
The dashed black line is the trajectory of the optimal liquidation strategy with an infinite time horizon. X0 =
(1, 1)>, Λ = ((1, 0), (0, 10)), Σ = ((1, 0), (0, 1)).

By the results of Schied, Schöneborn, and Tehranchi (2010), the optimal strategy for CARA investors is the
optimal deterministic strategy for mean-variance investors. For mean-variance investors however there is no
interaction between the liquidation of the positions in the two assets due to their independence. Hence the
optimal strategy liquidates both asset positions independently with the strategy given in Theorem 2.3 in Schied,
Schöneborn, and Tehranchi (2010). Investors with an infinite time horizon have an incentive to move their
portfolio in the direction of lower risk; if they have higher risk aversion then they will do this quicker than
if they have lower risk aversion, but the trading direction is unchanged. If a finite time liquidation horizon is
imposed, then the investor has an additional incentive to move their portfolio towards zero to satisfy the portfolio
liquidation constraint; this incentive is independent of the investor’s risk aversion. The optimal trading strategy
for an investor with finite time horizon is blending these two incentives, but the relative weight given to the two
depends on the investor’s level of risk aversion. A higher level of risk aversion results in trading predominantly
in a risk reducing direction, while a lower level of risk aversion favours trading towards an empty portfolio.
Figure 4 illustrates how the trajectory of the optimal liquidation strategy depends on the level of absolute risk
aversion A of the utility function. For large values of risk aversion, the basket is liquidated quickly irrespective
of the time horizon. Imposing a finite liquidation horizon hence results in only a small change to the liquidation
trajectory, which is primarily driven by market liquidity and volatility. For small values of the risk aversion A
however the infinite time horizon liquidation strategy has only liquidated a small proportion of the portfolio by
time T . Imposing complete liquidation by T hence requires a significant change of the liquidation strategy. The
optimal strategy corresponds roughly to a linear reduction in asset position towards an empty portfolio since
the primary trading motivation is the time constraint.

A Proof of results

This appendix consists of three parts. First we discuss mean-variance optimal strategies and prove Theorem
4.1. By extending methods of calculus of variations to the infinite time setting, we show that optimal strategies
exist, that they are unique and that they satisfy Bellman’s principle of optimality. In the second subsection, we
show that a smooth solution of the HJB equation exists and provide some of its properties. This is achieved by
first obtaining a solution of the PDE for ã and then defining ṽ by a transport equation with coefficient ã. In

12



the third subsection, we apply a verification argument and show that this solution of the HJB equation must
be equal to the value function. Theorems 5.1, 5.2 and 5.3 and Corollary 5.4 are direct consequences of the
propositions in the last two subsections. The proofs in the last two subsections have a similar structure to the
proofs in Schied and Schöneborn (2009). However, they differ in a few subtle points and we therefore provide
them in full detail.

A.1 Optimal mean-variance strategies

To obtain optimal trading strategies for the infinite horizon setting, we will first show that optimal strategies
exist for the setting with finite horizon T (i.e., Xt = 0 for t ≥ T ) and then consider the limit T →∞.

Lemma A.1. If a mean-variance optimal trading strategy exists for X0 ∈ Rn and time horizon T ∈]0,∞], then
this strategy is unique.

Proof. This follows directly from the strict convexity of the functional f(ξ) + 1
2X>ΣX.

Proposition A.2. For finite liquidation time horizons T ∈ R+, a mean-variance optimal liquidation strategy

ξ(X0,T ) exists for all initial portfolios X0 ∈ Rn. The portfolio evolution Xξ(X0,T )

t is C1 in t (i.e., the optimal

trading vector ξ
(X0,T )
t is continuous). We denote the time at which the portfolio Xξ

t attains zero by

T0 := inf{t > 0 : Xξ
t = 0} ∈]0, T ].

For t ∈ [0, T0[, the portfolio evolution Xξ
t is even C2 and fulfils the Euler-Lagrange equation

ΣXt = D2f(−Ẋt)Ẍt.

The optimal trading vector ξ(X0,T ) satisfies Bellman’s principle of optimality, i.e.,

ξ
(X0,T )
t = ξ

(Xt,T−t)
0 .

Furthermore, the initial trading speed ξ0 is locally uniformly bounded. More precisely, for each portfolio X̄0 ∈ R
and each time horizon T̄ , there is a δ > 0 and C > 0 such that |ξ(X0,T )

0 | < C for all |X0 − X̄0| < δ and T ≥ T̄ .

Theorem 2.2 in Schied, Schöneborn, and Tehranchi (2010) establishes the existence of a mean-variance
optimal strategy for finite liquidation time horizons, but not the uniform bound on ξ0, which we need for our
proof of Proposition A.3. We therefore present a self-contained proof of Proposition A.2 establishing this bound.

Proof. First, we observe that for mean-variance optimal ξ there is an a priori upper bound K > 0 independent
of T such that

sup{|Xξ
t | : t ∈ [0, T ]} < K.

To see this, select an arbitrary K̃ > X>0 ΣX0 and assume that 1
2X>t ΣXt attains K̃ at

T2 := min{t > 0 : 1
2X>t ΣXt ≥ K̃}. Then

K̃

2
≤ 1

2
X>t ΣXt ≤ K̃

for all t ∈ [T1, T2] with T1 := max{t < T2 : 1
2X>t ΣXt ≤ K̃

2 }. We therefore have

∫ T2

T1

(
f(ξt) +

1

2
X>t ΣXt

)
dt ≥

 min
X̃∈X̄ s.t.

1
2 X̃>T1

ΣX̃T1= K̃
2 ,

1
2 X̃>T2

ΣX̃T2=K̃

∫ T2

T1

f(ξ̃t)dt

+ (T2 − T1)
K̃

2
.

Let X̃∗ respectively ξ̃
∗

be a minimizer of the first term on the right hand side. Then 2
K̃

X̃∗T1+t(T2−T1) has

derivative 2(T2−T1)

K̃
ξ̃
∗
T1+t(T2−T1) and satisfies 1

2 X̃>0 ΣX̃0 = 1 and 1
2 X̃>1 ΣX̃1 = 2. Due to the scaling property
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(Equation (1)), we have

min
X̃∈X̄ s.t.

1
2 X̃>T1

ΣX̃T1= K̃
2 ,

1
2 X̃>T2

ΣX̃T2=K̃

∫ T2

T1

f(ξ̃t)dt =

∫ T2

T1

f(ξ̃
∗
t )dt

= (T2 − T1)

∫ 1

0

f(ξ̃
∗
T1+t(T2−T1))dt

= (T2 − T1)

∫ 1

0

(
K̃

2(T2 − T1)

)α+1

f

(
2(T2 − T1)

K̃
ξ̃
∗
T1+t(T2−T1)

)
dt

≥
(

1

T2 − T1

)α(
K̃

2

)α+1

min
X̃∈X̄ s.t. 1

2 X̃>0 ΣX̃0=1, 12 X̃>1 ΣX̃1=2

∫ 1

0

f(ξ̃t)dt.

Combining the previous two derivations, we obtain

∫ T2

T1

(
f(ξt) +

1

2
X>t ΣXt

)
dt ≥

(
1

T2 − T1

)α(
K̃

2

)α+1

C̃ + (T2 − T1)
K̃

2
(28)

with the constant

C̃ := min
X̃∈X̄ s.t. 1

2 X̃>0 ΣX̃0=1, 12 X̃>1 ΣX̃1=2

∫ 1

0

f(ξ̃t)dt > 0.

Since C̃ is independent of T1 and T2, the right-hand side of Equation (28) is bounded from below by a function
of K̃ that is increasing and unbounded. This establishes that an optimal ξ cannot attain arbitrarily large values
of X>t ΣXt respectively supt |Xt|.

We can therefore reduce the optimization problem with unbounded Xt ∈ Rn to an optimization problem
with bounded Xt ∈ [−K,K]n. By Tonelli’s existence theorem (see, e.g., Cesari (1983), Theorem 2.20), a mean-
variance optimal trading strategy exist for the bounded optimization problem; by our previous considerations,
this strategy is also optimal for the unbounded optimization problem Xt ∈ Rn, and we denote this strategy by
ξ(X0,T ).

In order to apply theorems ensuring continuity of even smoothness of ξ, we need to show that the optimal
ξ = ξ(X0,T ) is essentially bounded. The idea of the following proof is that if ξ trades extremely quickly at some
points in time, then the mean-variance costs of ξ can be reduced by “smoothing” the trading speed, i.e., slowing
down trading when it is fast and accelerating it when it is slow. To formalize this argument, we first observe

that there are bounds (Xξ
t )>ΣXξ

t < K0 and
∫ T

0
f(ξt)dt = K1 <∞, and we define

µ : t ∈ R→ µt :=

∫ t

0

1f(ξs)≥K2
ds ∈ R,

where K2 > 0 is a large, arbitrary constant. ξ is essentially bounded if there is a K2 > 0 with µ ≡ 0. We
assume that µ 6= 0 for all K2 ∈ R+ and establish a contradiction. We define the time transformation

t̃(t, s) := sµt +
T − sµT
T − µT

(t− µt).

For 0 < s < T
µT

, this transformation is a bijection t̃(·, s) : [0, T ] → [0, T ] satisfying t̃(0, s) = 0 and t̃(T, s) = T .

When using the variables t̃ and t in the following, we will always assume that they are connected by this
bijection, i.e., that t̃ = t̃(t, s). We can now define a new portfolio evolution Y depending on s:

Y(s) : t̃ ∈ R+
0 → Y

(s)

t̃
:= Xt.

The portfolio evolution Y(s) is absolutely continuous and fulfils

ξ
(s)

t̃
:= − d

dt̃
Y

(s)

t̃
=

{
1
sξt for f(ξt) ≥ K2
T−µT
T−sµT ξt for f(ξt) < K2.
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Note that ξ(1) = ξ. The mean-variance costs of executing Y(s) are given by∫ T

0

(f(ξ
(s)

t̃
) + (Y

(s)

t̃
)>ΣY

(s)

t̃
)dt̃

=

∫
f(ξt)≥K2

(f(ξ
(s)

t̃
) + (Y

(s)

t̃
)>ΣY

(s)

t̃
)dt̃

+

∫
f(ξt)<K2

(f(ξ
(s)

t̃
) + (Y

(s)

t̃
)>ΣY

(s)

t̃
)dt̃

= s

∫
f(ξt)≥K2

(
f

(
1

s
ξt

)
+ (Xξ

t )>ΣXξ
t

)
dt

+
T − sµT
T − µT

∫
f(ξt)<K2

(
f

(
T − µT
T − sµT

ξt

)
+ (Xξ

t )>ΣXξ
t

)
dt

=

(
1

s

)α ∫
f(ξt)≥K2

f(ξt)dt+ s

∫
f(ξt)≥K2

(Xξ
t )>ΣXξ

t dt

+

(
T − µT
T − sµT

)α ∫
f(ξt)<K2

f(ξt)dt+
T − sµT
T − µT

∫
f(ξt)<K2

(Xξ
t )>ΣXξ

t dt.

By differentiating with respect to s at s = 1, we have

d

ds

∣∣∣∣
s=1

∫ T

0

(f(ξ
(s)

t̃
) + (Y

(s)

t̃
)>ΣY

(s)

t̃
)dt̃

= −α
∫
f(ξt)≥K2

f(ξt)dt︸ ︷︷ ︸
≥K2µT

+

∫
f(ξt)≥K2

(Xξ
t )>ΣXξ

t dt︸ ︷︷ ︸
≤K0µT

+α
µT

T − µT

∫
f(ξt)<K2

f(ξt)dt︸ ︷︷ ︸
≤K1−K2µT

− µT
T − µT

∫
f(ξt)<K2

(Xξ
t )>ΣXξ

t dt︸ ︷︷ ︸
≥0

.

If K2 is large enough, the right hand side of the above equation is smaller than zero for all possible values
µT ∈]0, K1

K2
], which contradicts the optimality of ξ = ξ(1). This completes the proof that ξ is essentially

bounded. Note that a suitably large bound K2 holds for all time horizons longer than T and for all initial
portfolios that are close to X0, establishing the uniform boundedness of ξ0.

Since ξ is essentially bounded, we can apply the Theorems of Tonelli and Weierstrass (see Cesari (1983),
Theorem 2.6) and find that Xξ

t is C1 everywhere and C2 until it attains zero. Furthermore, it fulfils the Euler-
Lagrange equation. Bellman’s principle of optimality for the optimal trading vector ξ follows by the additivity
of mean costs and variance of proceeds, as already noted by Almgren and Chriss (2001).

Proposition A.3. For an infinite liquidation time horizon, a mean-variance optimal liquidation strategy ξ̄
(X0)

exists for all initial portfolios X0 ∈ Rn. The portfolio evolution Xξ̄
(X0)

t is C1 in t (i.e., the optimal trading vector

ξ̄
(X0)
t is continuous). We denote the time at which the portfolio Xt attains zero by

T0 := inf{t > 0 : Xξ̄
t = 0} ∈]0,∞].

For t ∈ [0, T0[, the portfolio evolution Xξ
t is C2 and fulfils the Euler-Lagrange equation

ΣXt = D2f(−Ẋt)Ẍt. (29)

The optimal trading vector ξ̄
(X0)

satisfies Bellman’s principle of optimality, i.e.,

ξ̄
(X0)
t = ξ̄

(Xt)
0 =: ā(Xt).

with a continuous vector field ā : X ∈ Rn → ā(X) ∈ Rn.
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Proof. First, we introduce some shorthand notation. For a sequence (X
(i)
0 , T (i)) ∈ Rn × R, we define

ξ(i) := ξ(X
(i)
0 ,T (i))

X
(i)
t := Xξ(i)

t

T
(i)
0 := inf{t > 0 : X

(i)
t = 0} ∈]0, T (i)].

In Proposition A.2, we established the uniform boundedness of ξ0. For each X0 ∈ Rn, we can therefore select

a sequence (X
(i)
0 , T (i)) with limi→∞X

(i)
0 = X0 and limi→∞ T (i) =∞ such that ξ

(i)
0 converges to limi→∞ ξ

(i)
0 =:

ξ
(∞)
0 . Then we define X

(∞)
t as the solution to the Euler-Lagrange equation with initial values X

(∞)
0 = X0 and

Ẋ
(∞)
0 = −ξ(∞)

0 until X
(∞)
t attains zero at time T

(∞)
0 ∈]0,∞]. On [T

(∞)
0 ,∞[, we define X

(∞)
t ≡ 0.

Let φ(t,X0, ξ0) be the position and trading speed (Xt, Ẋt) at time t of the solution to the Euler-Lagrange
equation with initial values X0 and ξ0. Since the Euler-Lagrange equation is Lipschitz continuous on X 6= 0,

for any compact subset [0, T ] ⊂ [0, T
(∞)
0 [ there exists an open set O with (X0, ξ0) ∈ O ⊂ R2n such that φ is

continuous on [0, T ] × O. On any compact subset of [0, T ] × O, this ensures uniform continuity. Since (X(i))

is a family of solutions to the Euler-Lagrange equation with converging initial values (X
(i)
0 , ξ

(i)
0 ), this implies

uniform convergence of (X(i), Ẋ(i)) to (X(∞), Ẋ(∞)) on any compact subset [0, T ] ⊂ [0, T
(∞)
0 [. Therefore∫ ∞

0

(f(ξ(∞)
s ) + (X(∞)

s )>ΣX(∞)
s )ds = lim

T→T (∞)
0

∫ T

0

(f(ξ(∞)
s ) + (X(∞)

s )>ΣX(∞)
s )ds

= lim
T→T (∞)

0

lim
i→∞

∫ T

0

(f(ξ(i)
s ) + (X(i)

s )>ΣX(i)
s )ds

≤ lim
i→∞

∫ ∞
0

(f(ξ(i)
s ) + (X(i)

s )>ΣX(i)
s )ds.

This establishes that X(∞) is “at least as good” as the limit of the finite time strategies X(i). In Proposition A.6,
we show that X(∞) ∈ X̄ . We now show that no strategy can be any better than this limit. Let X[∞] ∈ X̄ be a

deterministic admissible strategy with X
[∞]
0 = X0 and finite mean-variance cost∫ ∞

0

(f(ξ[∞]
s ) + (X[∞]

s )>ΣX[∞]
s )ds <∞.

Then X
[∞]
t converges to zero as t tends to infinity. We define a sequence of trading strategies X[i] that liquidate

the portfolio X
(i)
0 by time T (i) > 2 in the following way:

X
[i]
t :=


X

[∞]
t + (1− t)(X(i)

0 −X0) for 0 ≤ t ≤ 1

X
[∞]
t for 1 < t < T (i) − 1

(T (i) − t)X[∞]

T (i)−1
for T (i) − 1 ≤ t ≤ T (i)

0 for t > T (i).

We then have

lim
i→∞

∫ ∞
0

(f(ξ(i)
s ) + (X(i)

s )>ΣX(i)
s )ds ≤ lim

i→∞

∫ ∞
0

(f(ξ[i]
s ) + (X[i]

s )>ΣX[i]
s )ds

= lim
T→∞

lim
i→∞

∫ T

0

(f(ξ[i]
s ) + (X[i]

s )>ΣX[i]
s )ds

=

∫ ∞
0

(f(ξ[∞]
s ) + (X[∞]

s )>ΣX[∞]
s )ds.

Hence X(∞) is mean-variance optimal. Because it is unique by Lemma A.1, we see that ξ
(i)
0 converges to the

same vector ξ∞0 for any sequence (X
(i)
0 , T (i)). Therefore ξ

(∞)
0 depends continuously on X0. The validity of the

Euler-Lagrange equation carries over by construction; Bellman’s principle of optimality follows again by the
additivity of mean costs and variance of proceeds.
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The next proposition establishes a special form of the identity established by Beltrami (1868) and rediscovered
by Hilbert in 1900; see also Bolza (1909)[pp. 107].

Proposition A.4. The vector field ā fulfils

f(ā(X))

X>ΣX
=

1

2α
for all X ∈ Rn\{0}.

Proof. Let Xt be a mean-variance optimal strategy. Then

d

dt

(
f(−Ẋt) +

1

2
X>t ΣXt

)
= −∇f(−Ẋt)Ẍt + X>t ΣẊt

= −∇f(−Ẋt)Ẍt + (Ẍt)
>D2f(−Ẋt)Ẋt (30)

=
d

dt
(−∇f(−Ẋt)Ẋt)

=
d

dt
((α+ 1)f(−Ẋt)) (31)

where Equation (30) follows by the Euler-Lagrange equation (29) and Equation (31) by the scaling property (1)
which implies

∇f(a)a = lim
s→0

f((1 + s)a)− f(a)

s
= (α+ 1)f(a). (32)

Hence

−αf(ā(X0)) +
1

2
X>0 ΣX0 = lim

t→0

(
−αf(ā(Xt)) +

1

2
X>t ΣXt

)
= 0.

The desired equality follows immediately.

Finally, we show that the mean-variance value function fulfils the dynamic programming PDE.

Proposition A.5. The mean-variance value function

v̄(X0) := inf
ξ̄∈X̄

[∫ ∞
0

(
f(ξ̄s) +

1

2
(Xξ̄

s )>ΣXξ̄
s

)
ds

]
is C1 and fulfils

∇f(ā(X)) = v̄X. (33)

Proof. The mean-variance value function is convex because of the convexity of
f(ξ)+ 1

2X>ΣX. The function v̄ is therefore necessarily differentiable at X0 ∈ Rn, if it is bounded from above by
a smooth function ṽ that touches v̄ at X0, i.e., ṽ(X0) = v̄(X0). Such a function ṽ however can be constructed as

ṽ(X) =

∫ ∞
0

(
f(ξX

t ) + (XξX

t )>ΣXξX

t

)
dt

with
ξX
t := ξ̄

(X0)
t +Mt(X−X0)

where
Mt := (ξ̄

(X0+e1)
t − ξ̄

(X0)
t , ξ̄

(X0+e2)
t − ξ̄

(X0)
t , . . . , ξ̄

(X0+en)
t − ξ̄

(X0)
t ) ∈ Rn×n

and ei is the ith unit vector. Therefore v̄ is differentiable. By the dynamic programming principle, we have
that for any absolutely continuous path X : R+

0 → Rn:

v̄(X0) ≤ v̄(Xt) +

∫ t

0

(
f(−Ẋs) +

1

2
X>s ΣXs

)
ds

with equality for the optimal strategy Xξ̄. Since v̄ is differentiable, this implies

0 ≤ v̄X(X0)Ẋ0 + f(−Ẋ0) +
1

2
X>0 ΣX0.

The right hand side therefore attains its minimum at the optimal Ẋ0 = −ā(X0) and therefore

∇f(ā(X0)) = v̄X(X0).

This establishes Equation (33) and that the mean-variance cost v̄ is C1.
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Proposition A.6. For any X0 ∈ Rn, the deterministic mean-variance optimal trading strategy ξ̄ = ξ̄
(X0)

satisfies

lim
t→∞

(Xξ̄
t )>ΣXξ̄

t t ln ln t = 0. (34)

It is hence an admissible trading strategy, i.e., ξ̄ ∈ X̄ ⊂ X .

For the proof, we need the following lemma.

Lemma A.7. Let Y0 = rX0 and let X and Y be the corresponding mean-variance optimal strategies. Then we
have that

Yt = rXbt with b := r
1−α
1+α .

Proof of Lemma A.7. Let us define

X̂t :=
1

r
Y t
b

Ŷt := rXbt.

Then X̂ and Ŷ are deterministic strategies with X̂0 = X0 and Ŷ0 = Y0, and we obtain

v̄(X0) ≤
∫ ∞

0

(
f(− ˙̂

Xs) +
1

2
X̂>s ΣX̂s

)
ds

=

(
1

rb

)α+1

b

∫ ∞
0

f(−Ẏs)ds+

(
1

r

)2

b

∫ ∞
0

1

2
Y>s ΣYsds

= r−
3α+1
α+1 v̄(Y0)

≤ r−
3α+1
α+1

∫ ∞
0

(
f(− ˙̂

Ys) +
1

2
Ŷ>s ΣŶs

)
ds

= r−
3α+1
α+1

(
(rb)

α+1 1

b

∫ ∞
0

f(−Ẋs)ds+ r2 1

b

∫ ∞
0

1

2
X>s ΣXsds

)
= v̄(X0).

All the inequalities above are thus equalities, and hence X̂ and Ŷ are optimal. The lemma follows since the
optimal strategies are unique.

Proof of Proposition A.6. It is clear that ξ̄
(X0)

satisfies the conditions of Section 2. To see that it is admissible,

i.e., that , i.e., that ξ̄
(X0) ∈ X , the only thing left to prove is Equation (34). First, we observe that by Lemma

A.7, it is sufficient to prove this equation for X0 with X>0 ΣX0 = 1. Let us first define

τ0 := sup
X0 with X>0 ΣX0=1

max

{
t > 0 : (Xξ̄

(X0)

t )>ΣXξ̄
(X0)

t ≥ 1

2

}
.

This τ0 is the time it takes at most until X>0 ΣX0 is reduced from 1 to 1
2 . By Lemma A.7, we obtain that

τ1 := sup
X0 with X>0 ΣX0= 1

2

max

{
t > 0 : (Xξ̄

(X0)

t )>ΣXξ̄
(X0)

t ≥ 1

4

}
= 2

1−α
1+α τ0

or more generally

τk := sup
X0 with X>0 ΣX0=( 1

2 )
k

max

{
t > 0 : (Xξ̄

(X0)

t )>ΣXξ̄
(X0)

t ≥
(

1

2

)k+1
}

= 2k
1−α
1+α τ0.

Let X0 ∈ Rn with X>0 ΣX0 = 1. Then for all t ≥
∑k

0 τk, we have that

(Xξ̄
(X0)

t )>ΣXξ̄
(X0)

t ≤
(

1

2

)k+1

.

For α ≥ 1, we have that τk ≤ τ0; (Xξ̄
t )>ΣXξ̄

t is therefore bounded from above by an exponential function. For

0 < α < 1, we see that (Xξ̄
t )>ΣXξ̄

t is bounded from above by K(t + 1)
α+1
α−1 for a K > 0. In both cases we see

that Equation (34) holds.
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A.2 Existence and characterization of a smooth solution of the HJB equation

As a first step, we observe that limM→∞ u(M) < ∞ due to the boundedness of the risk aversion, and we can
thus assume without loss of generality that

lim
M→∞

u(M) = 0.

Proposition A.8. There exists a smooth (C2,4) solution of

ãY = −2α+ 1

α+ 1
ãαãM +

α(α− 1)

α+ 1

(
ãM
ã

)2

+
α

α+ 1

ãMM

ã
(35)

with initial value
ã(0,M) = A(M)

1
α+1 . (36)

The solution satisfies

ãmin := inf
M∈R

A(M)
1

α+1 ≤ ã(Y,M) ≤ sup
M∈R

A(M)
1

α+1 =: ãmax. (37)

The function ã is C2,4 in the sense that it has a continuous derivative ∂i+j

∂Y i∂Mj ã(Y,M) if 2i + j ≤ 4. In
particular, ãYMM and ãMMM exist and are continuous. We do not establish the uniqueness of ã directly in the
preceding proposition. However, it follows from Proposition A.16.

The statement follows from the following auxiliary theorem from the theory of parabolic partial differential
equations. We do not establish the uniqueness of ã directly in the preceding proposition. However, it follows
from Proposition A.16.

Theorem A.9 (Auxiliary theorem: Solution of Cauchy problem). There is a smooth solution (C2,4)

g : (t, x) ∈ R+
0 × R→ g(t, x) ∈ R

for the parabolic partial differential equation13

gt −
d

dx
κ(x, t, g, gx) + θ(x, t, g, gx) = 0 (38)

with initial value condition
g(0, x) = ψ0(x)

if all of the following conditions are satisfied:

• ψ0(x) is smooth (C4) and bounded

• κ and θ are smooth (C3 respectively C2)

• There are constants b1 and b2 ≥ 0 such that for all x and u:(
θ(x, t, u, 0)− ∂κ

∂x
(x, t, u, 0)

)
u ≥ −b1u2 − b2.

• For all M > 0, there are constants µM ≥ νM > 0 such that for all x, t, u and p that are bounded in
modulus by M :

νM ≤
∂κ

∂p
(x, t, u, p) ≤ µM

and (
|κ|+

∣∣∣∣∂κ∂u
∣∣∣∣) (1 + |p|) +

∣∣∣∣∂κ∂x
∣∣∣∣+ |θ| ≤ µM (1 + |p|)2.

13Here, gt refers to d
dt
g and not g(t).
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Proof. The theorem is a direct consequence of Theorem 8.1 in Chapter V of Ladyzhenskaya, Solonnikov, and
Ural’ceva (1968). In the following, we outline the last step of its proof because we will use it for the proof of
subsequent propositions.

The conditions of the theorem guarantee the existence of solutions gN of Equation (38) on the strip R+
0 ×

[−N,N ] with boundary conditions

gN (0, x) = ψ0(x) for all x ∈ [−N,N ]

and
gN (t,±N) = ψ0(±N) for all t ∈ R+

0 .

These solutions converge smoothly as N tends to infinity: limN→∞ gN = g.

Proof of Proposition A.8. We want to apply Theorem A.9 and set

κ(x, t, u, p) := h1(u)p

θ(x, t, u, p) := h2(u)p− h3(u)p2 + h′1(u)p2

ψ0(x) := A(M)
1

α+1

with smooth functions h1, h2, h3 : R→ R. With

h1(u) =
α

(α+ 1)u
h2(u) =

2α+ 1

(α+ 1)
uα h3(u) =

α(α− 1)

(α+ 1)u2
, (39)

Equation (38) becomes Equation (35) by relabeling the coordinates from t to Y and from x to M . All conditions
of Theorem A.9 are fulfilled, if we take h1, h2 and h3 to be smooth non-negative functions bounded away from
zero and infinity and fulfilling Equation (39) for ãmin ≤ u ≤ ãmax. With these functions, there exists a smooth
solution to

gt = −h2(g)gx + h3(g)g2
x + h1(g)gxx.

We now show that this solution g also fulfils

gt = −2α+ 1

α+ 1
gαgx +

α(α− 1)

α+ 1

(
gx
g

)2

+
α

α+ 1

gxx
g

by using the maximum principle to show that ãmin ≤ g ≤ ãmax. First assume that there is a (t0, x0) such that
g(t0, x0) > ãmax. Then there is an N > 0 and γ > 0 such that also g̃N (t0, x0) := gN (t0, x0)e−γt0 > ãmax with
gN as constructed in the proof of Theorem A.9. Then maxt∈[0,t0],x∈[−N,N ] g̃N (t, x) is attained at an interior
point (t1, x1), i.e., 0 < t1 ≤ t0 and −N < x1 < N . We thus have

g̃N,t(t1, x1) ≥ 0

g̃N,x(t1, x1) = 0

g̃N,xx(t1, x1) ≤ 0.

We furthermore have that

g̃N,t = e−γtgN,t − γe−γtgN
= −e−γth2(gN )gN,x + e−γth3(gN )g2

N,x + e−γth1(gN )gN,xx − γe−γtgN
= −h2(gN )g̃N,x + h3(gN )g̃N,xgN,x + h1(gN )g̃N,xx − γg̃N

and therefore that
g̃N (t1, x1) ≤ 0.

This however contradicts g̃N (t1, x1) ≥ g̃N (t0, x0) ≥ ãmax > 0.
By a similar argument, we can show that if there is a point (t0, x0) with g(t0, x0) < ãmin, then the interior

minimum (t1, x1) of a suitably chosen g̃N := e−γt(gN − ãmax) < 0 satisfies g̃N (t1, x1) ≥ 0 and thus causes a
contradiction.
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Proposition A.10. There exists a C2,4-solution w̃ : R+
0 × R→ R of the transport equation

w̃Y = −ãαw̃M (40)

with initial value
w̃(0,M) = u(M).

The solution satisfies
0 ≥ w̃(Y,M) ≥ u(M − ãαmaxY )

and is increasing in M and decreasing in Y .

Proof. The proof uses the method of characteristics. Consider the function

P : (Y, S) ∈ R+
0 × R→ P (Y, S) ∈ R

satisfying the ODE
PY (Y, S) = ã(Y, P (Y, S))α (41)

with initial value condition P (0, S) = S. Since ãα is smooth and bounded, a solution of the above ODE exists
for each fixed S. For every Y , P (Y, ·) is a diffeomorphism mapping R onto R that has the same regularity as ã,
i.e., belongs to C2,4. We define

w̃(Y,M) = u(S) iff P (Y, S) = M.

Then w̃ is a C2,4-function satisfying the initial value condition. By definition, we have

0 =
d

dY
w̃(Y, P (Y, S))

= w̃M (Y, P (Y, S))PY (Y, S) + w̃Y (Y, P (Y, S))

= w̃M (Y, P (Y, S))ã(Y, P (Y, S))α + w̃Y (Y, P (Y, S)).

Therefore w̃ fulfils the desired partial differential equation. Since ã ≤ ãmax, we know that PY ≤ ãαmax and hence
P (Y, S) ≤ S + Y ãαmax and thus w̃(Y,M) ≥ u(M − ãαmaxY ).

The monotonicity statements in the proposition follow because the family of solutions of the ODE (41) do
not cross and since ã is positive.

Proposition A.11. The function w(X,M) := w̃(v̄(X),M) has continuous derivatives up to wXMM and
wMMMM , and it solves the HJB equation

min
a

[
−1

2
wMMX>ΣX + wMf(a) + wXa

]
= 0. (42)

The unique minimum is attained at
a(X,M) := ã(v̄(X),M)ā(X). (43)

Note that w is not necessarily everywhere twice differentiable in X; the single asset case with α < 1 is a
counterexample (see Equation (10)).

Proof. Assume for the moment that

ãα+1 = − w̃MM

w̃M
. (44)

Then with Y = v̄(X):

0 = −1

2
X>ΣXw̃M

(
w̃MM

w̃M
+ ãα+1

)
= −1

2
X>ΣXw̃M

(
w̃MM

w̃M
+

2αf(ā)

X>ΣX
ãα+1

)
(45)

= −1

2
w̃MMX>ΣX − αw̃Mf(a) (46)

= inf
a

[
−1

2
wMMX>ΣX + wMf(a) + wXa

]
. (47)
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Equation (45) holds because of Theorem 4.1, Equation (46) because of the scaling property of f (Equation (1)),
and Equation (47) again because of the scaling property of f as in Equation (32). Note that the minimizer a
as in Equation (43) is unique since ∇f is injective due to the convexity of f .

We now show that Equation (44) is fulfilled for all M and Y = v̄(X). First, observe that it holds for Y = 0.
For general Y , consider the following two equations:

d

dY
ãα+1 = −(2α+ 1)ã2αãM + α(α− 1)ãα−2ã2

M + αãα−1ãMM (48)

− d

dY

w̃MM

w̃M
= ãα

d

dM

w̃MM

w̃M
+ αãα−1ãM

w̃MM

w̃M
+ α(α− 1)ãα−2ã2

M + αãα−1ãMM . (49)

The first of these two equations holds because of Equation (35) and the second one because of Equation (40).
Now we have

d

dY

(
ãα+1 +

w̃MM

w̃M

)
= −ãα d

dM

(
ãα+1 +

w̃MM

w̃M

)
− αãα−1ãM

(
ãα+1 +

w̃MM

w̃M

)
.

Hence, the function g(Y,M) := ãα+1 + w̃MM
w̃M

satisfies the linear PDE

gY = −ãαgM − αãα−1ãMg

with initial value condition g(0,M) = 0. One obvious solution to this PDE is g(Y,M) ≡ 0. By the method of
characteristics this is the unique solution to the PDE, since ã and ãM are smooth and hence locally Lipschitz.

The next auxiliary lemma will prove useful in the following.

Lemma A.12 (Auxiliary Lemma). There are positive constants c1, c2, c3, c4 and b such that

u(M) ≥ w(X,M) ≥ u(M) exp(bv̄(X)) (50)

0 ≤ wM (X,M) ≤ c1 + c2 exp(−c3M + c4v̄(X))

for all (X,M) ∈ Rn × R.

Proof of Lemma A.12. The left hand side of the first inequality follows by the boundary condition for w and the
monotonicity of w with respect to X as established in Proposition A.10. Since the risk aversion of u is bounded
from above by ãα+1

max, we have

u(M −∆) ≥ u(M)eã
α+1
max∆ for ∆ ≥ 0 (51)

and thus by Proposition A.10

w(X,M) ≥ u(M − ãαmaxv̄(X)) ≥ u(M)eã
2α+1
max v̄(X)

which establishes the right hand side of the first inequality with b = ã2α+1
max .

For the second inequality, we will show the equivalent inequality

0 ≤ w̃M (Y,M) ≤ c1 + c2 exp(−c3M + c4Y ).

The left hand side follows since w̃ is increasing in M by Proposition A.10. For the right hand side, note that
also the “risk aversion” of w̃ is bounded by ãα+1

max due to Equation (44). Hence

w̃(Y,M0) ≥ w̃(Y,M) +
w̃M (Y,M)

ãα+1
max

(
1− e−ã

α+1
max(M0−M)

)
.

Since
lim

M0→∞
w̃(Y,M0) ≤ lim

M0→∞
u(M0) = 0

we have

0 ≥ w̃(Y,M) +
w̃M (Y,M)

ãα+1
max

and thus
w̃M (Y,M) ≤ −w̃(Y,M)ãα+1

max ≤ −u(M − ãαmaxY )ãα+1
max.

Since u is bounded by an exponential function, we obtain the desired bound on w̃M .
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A.3 Verification argument

We now connect the PDE results from Subsection A.2 with the optimal stochastic control problem introduced
in Section 2. For any admissible strategy ξ ∈ X and k ∈ N we define

τξk := inf
{
t ≥ 0

∣∣ ∫ t

0

f(ξs) ds ≥ k
}
.

We proceed by first showing that u(Mξ
t ) and w(Xξ

t ,M
ξ
t ) fulfil local supermartingale inequalities. Thereafter

we show that w(X0,M0) ≥ limt→∞ E[u(Mξ
t )] with equality for ξ = ξ̂.

Lemma A.13. For any admissible strategy ξ the expected utility E[u(Mξ
t ) ] is decreasing in t. Moreover, we

have E[u(Mξ

t∧τξ
k

) ] ≥ E[u(Mξ
t ) ].

Proof. Since Mξ
t − M0 is the difference of the true martingale

∫ t
0
(Xξ

s )>σ dBs and the increasing process∫ t
0
f(ξs) ds, it satisfies the supermartingale inequality E[Mξ

t | Fs ] ≤ Mξ
s for s ≤ t (even though it may fail

to be a supermartingale due to the possible lack of integrability). Hence E[u(Mξ
t ) ] is decreasing according to

Jensen’s inequality.
For the second assertion, we first take n = k and write for τm := τξm

E[u(Mξ
t∧τk) ] = E

[
u
(
M0 +

∫ t∧τn

0

(Xξ
s )>σ dBs −

∫ t∧τk

0

f(ξs) ds
) ]
.

When sending n to infinity, the right-hand side decreases to

E
[
u
(
M0 +

∫ t

0

(Xξ
s )>σ dBs −

∫ t∧τk

0

f(ξs) ds
) ]
, (52)

by dominated convergence because u is bounded from below by an exponential function, the integral of f(ξ)
is bounded by k, and the stochastic integrals are uniformly bounded from below by infs≤KtWs, where W is
the DDS-Brownian motion of

∫
(Xξ

s )>σ dBs and K is an upper bound for (Xξ)>ΣXξ. Finally, the term in

Equation (52) is clearly larger than or equal to E[u(Mξ
t ) ].

Lemma A.14. For any admissible strategy ξ, w(Xξ
t ,M

ξ
t ) is a local supermartingale with localizing sequence

(τξk ).

Proof. We use a verification argument similar to the ones in Schied, Schöneborn, and Tehranchi (2010) and
Schied and Schöneborn (2009). For T > t ≥ 0, Itô’s formula yields that

w(Xξ
T ,M

ξ
T )− w(Xξ

t ,M
ξ
t ) =

∫ T

t

wM (Xξ
s ,M

ξ
s )(Xξ

s )>σ dBs

−
∫ T

t

[
wMf(ξs) + wXξs −

1

2
(Xξ

s )>ΣXξ
swMM

]
(Xξ

s ,M
ξ
s ) ds. (53)

By Proposition A.11 the latter integral is non-negative and we obtain

w(Xξ
t ,M

ξ
t ) ≥ w(Xξ

T ,M
ξ
T )−

∫ T

t

wM (Xξ
s ,M

ξ
s )(Xξ

s )>σ dBs. (54)

We will show next that the stochastic integral in Equation (54) is a local martingale with localizing sequence
(τk) := (τξk ). For some constant C1 depending on t, k, |σ|, M0, and on the upper bound of |Xξ| we have for
s ≤ t ∧ τk

Mξ
s = M0 + (Xξ

s )>σBs +

∫ s

0

(ξ>q σBq − f(ξq)) dq ≥ −C1

(
1 + sup

q≤t
|Bq|

)
.

Using Lemma A.12, we see that for s ≤ t ∧ τk

0 ≤ wM (Xξ
s ,M

ξ
s ) ≤ c1 + c2 exp

(
c3C1

(
1 + sup

q≤t
|Bq|

)
+ c4K

2

)
(55)
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where K is the upper bound of v̄(Xξ). Since supq≤t |Bq| has exponential moments of all orders, the martingale
property of the stochastic integral in Equation (54) follows. Taking conditional expectations in Equation (54)
thus yields the desired supermartingale property

w(Xξ
t∧τk ,M

ξ
t∧τk) ≥ E[w(Xξ

T∧τk ,M
ξ
T∧τk)|Ft ]. (56)

The integrability of w(Xξ
t∧τk ,M

ξ
t∧τk) follows from Lemma A.12 and Equation (51) in a similar way as in Equa-

tion (55).

Lemma A.15. There is an adapted strategy ξ̂ fulfilling

ξ̂t = a(Xξ̂
t ,M

ξ̂
t ) (57)

with a as defined in Equation 43. This ξ̂ is admissible and satisfies
∫∞

0
f(ξ̂t) dt < K for some constant K.

Furthermore, w(Xξ̂
t ,M

ξ̂
t ) is a martingale and

w(X0,M0) = lim
t→∞

E[u(M ξ̂
t ) ] ≤ v2(X0,M0) := sup

ξ∈X
lim
t→∞

E[u(Mξ
t )].. (58)

Proof. Consider the stochastic differential equation

d

(
st
Mt

)
=

(
ã(v̄(Xξ̄

st),Mt)dt

−ã(v̄(Xξ̄
st),Mt)

α+1f(ā(Xξ̄
st))dt+ (Xξ̄

st)
>σdBt

)
(59)

with initial condition s0 = 0. The functions ã and v̄ are differentiable, Xξ̄
s is differentiable in s, and by the

Beltrami identity (9) we have

f(ā(Xξ̄
s )) =

(Xξ̄
s )>ΣXξ̄

s

2α

which establishes that f(ā(Xξ̄
s )) is differentiable in s. Hence, Equation (59) satisfies local boundedness and

Lipschitz conditions and hence has a solution; see for example Durrett (1996). We can now set X̂t := Xξ̄
st ;

the resulting stochastic process X̂ is absolutely continuous, and by setting ξ̂t := − ˙̂
Xt we obtain a solution

of Equation (57) since ξ̂t = −Ẋξ̄
st ṡt = ā(X̂t)ã(v̄(X̂t),Mt) = a(X̂t,Mt). We observe that ξ̂ is admissible if∫∞

0
f(ξ̂t) dt < K for some constant K; conditions (2) and (3) are clear by Proposition A.6 and the lower bound

on ã (Proposition A.8). The upper bound for
∫∞

0
f(ξ̂t) dt can be derived as follows:∫ ∞

0

f(ξ̂t)dt =

∫ ∞
0

f(ã(v̄(Xξ̂
t ),M ξ̂

t )ā(Xξ̂
t ))dt =

∫ ∞
0

ãα+1(v̄(Xξ̂
t ),M ξ̂

t )f(ā(Xξ̂
t ))dt

≤ ãα+1
max

∫ ∞
0

f(ā(Xξ̂
t ))dt ≤ ãα+1

max

ãmin
v̄(X0).

Next, with the choice ξ = ξ̂ the rightmost integral in Equation (53) vanishes, and we get equality in

Equation (56). Since τ ξ̂K =∞, this proves the martingale property of w(Xξ̂
t ,M

ξ̂
t ). Furthermore, we obtain from

Equation (50) that

u(M ξ̂
t ) ≥ w(Xξ̂

t ,M
ξ̂
t ) ≥ u(M ξ̂

t ) exp(bv̄(Xξ̂
t )).

Since v̄(Xξ̂
t ) uniformly converges to zero as t tends to infinity, we obtain Equation (58).

Proposition A.16. We have v2 = w, and ξ̂ of Lemma A.15 is the a.s. unique optimal strategy to achieve v2.

Proof. By Lemma A.15, we already have w ≤ v2. We now show that v2 ≤ w. Let ξ be any admissible strategy
such that

lim
t→∞

E[u(Mξ
t )] > −∞. (60)

By Lemmas A.14 and A.12 we have for all k, t and (τk) := (τξk )

w(X0,M0) ≥ E[w(Xξ
t∧τk ,M

ξ
t∧τk)] ≥ E

[
u(Mξ

t∧τk) exp(bv̄(Xξ
t∧τk))

]
.
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As in the proof of Lemma A.13 one shows that

lim inf
k→∞

E
[
u(Mξ

t∧τk) exp(bv̄(Xξ
t∧τk))

]
≥ lim inf

k→∞
E
[
u(Mξ

t ) exp(bv̄(Xξ
t∧τk))

]
= E

[
u(Mξ

t ) exp(bv̄(Xξ
t ))
]
.

Hence,

w(X0,M0) ≥ E[u(Mξ
t )] + E

[
u(Mξ

t )(exp(bv̄(Xξ
t ))− 1)

]
.

Let us assume for a moment that the second expectation on the right attains values arbitrarily close to zero.
Then

w(X0,M0) ≥ lim
t→∞

E[u(Mξ
t )].

Taking the supremum over all admissible strategies ξ gives w ≥ v2. The optimality of ξ̂ follows from Lemma A.15,
its uniqueness from the fact that the functional E[u(Mξ

t )] is strictly concave since u is concave and increasing

and Mξ
t is concave.

We now show that E
[
u(Mξ

t )(exp(bv̄(Xξ
t ))− 1)

]
attains values arbitrarily close to zero. First we observe

that
0 ≥ u(M) ≥ c5uMM (M)

for a constant c5 > 0, due to the boundedness of the risk aversion of u, and that

exp(bv̄(Xξ
t ))− 1 ≤ c6bv̄(Xξ

t ),

due to the bound on Xξ
t . Since Xξ

t is uniformly bounded, we see that for every ε1 > 0 there is a ε2 > 0 such
that the following bound holds uniformly:

v̄(Xξ
t ) < ε1 + ε2(Xξ

t )>ΣXξ
t .

Combining the last three inequalities, we obtain

0 ≥ E
[
u(Mξ

t )(exp(bv̄(Xξ
t ))− 1)

]
≥ bc6ε1E[u(Mξ

t )] + bc5c6ε2E[(Xξ
t )>ΣXξ

t uMM (Mξ
t )]. (61)

Let us now assume that the second expectation of Equation (61) attains values arbitrarily close to zero. Then
for each ε1 > 0 there is a t̃ ∈ R+ such that

0 ≥ E
[
u(Mξ

t̃
)(exp(bv̄(Xξ

t̃
))− 1)

]
≥ bc6ε1 lim

t→∞
E[u(Mξ

t )].

Sending ε1 to zero yields that E
[
u(Mξ

t )(exp(bv̄(Xξ
t ))− 1)

]
attains values arbitrarily close to zero, since limt→∞ E[u(Mξ

t )]

is bounded by assumption (see Equation (60)).
We finish the proof by showing that the second expectation of Equation (61) attains values arbitrarily close

to zero. By Lemma A.13 and the same line of reasoning as in the proof of Lemma A.14, we have for all k, t and
(τk) := (τξk )

−∞ < lim
s→∞

E[u(Mξ
s )] ≤ E[u(Mξ

t )] ≤ E[u(Mξ
t∧τk)]

= u(M0) + E
[∫ t∧τk

0

uM (Mξ
s )(Xξ

s )>σ dBs

]
− E

[∫ t∧τk

0

[
uMf(ξs)−

1

2
(Xξ

s )>ΣXξ
suMM

]
(Mξ

s ) ds

]
= u(M0)− E

[∫ t∧τk

0

[
uMf(ξs)−

1

2
(Xξ

s )>ΣXξ
suMM

]
(Mξ

s ) ds

]
. (62)

Sending k and t to infinity yields ∫ ∞
0

E
[
(Xξ

s )>ΣXξ
suMM (Mξ

s )
]
ds > −∞ (63)

which concludes the proof.
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Proposition A.17. We have v = w, and ξ̂ of Lemma A.15 is the a.s. unique optimal strategy.

Proof. For any admissible strategy ξ the martingale∫ t

0

(Xs)
>σdBs

is uniformly integrable due to the requirement in Equation (2). Therefore

E[u(Mξ
t )] ≥ E

[
u(Mξ

∞)
]

follows as in the proof of Lemma A.13. Hence, Proposition A.16 yields

E[u(Mξ
∞)] = lim

t→∞
E[u(Mξ

t )] ≤ v2(X0,M0) ≤ w(X0,M0).

Taking the supremum over all admissible strategies ξ gives v ≤ w. The converse inequality follows from
Lemma A.14, since ξ̂ is admissible.

Proof of Theorem 5.7. Fix N > 0 and let gi denote the function g̃N constructed in the proof of Proposition A.8

when the parabolic boundary condition is given by g̃N (Y,M) = Ai(M)
1

α+1 for Y = 0 or |M | = N , where
i ∈ {0; 1}. The result follows if we can show that h := g1 − g0 ≥ 0. A straightforward computation shows that
h solves the linear PDE

hY =
2α+ 1

α+ 1
(gα1 g1,M − gα0 g0,M ) +

α(α− 1)

α+ 1

((
g1,M

g1

)2

−
(
g0,M

g0

))
+

α

α+ 1

(
g1,MM

g1
− g0,MM

g0

)

=
2α+ 1

α+ 1

(
gα1 hM +

gα1 − gα0
g1 − g0

g0,Mh

)
+
α(α− 1)

α+ 1

(
g2

0g1,MhM + g2
0g0,MhM − g0g

2
0,Mh− g1g

2
0,Mh

g2
0g

2
1

)

+
α

α+ 1

(
g0hMM − g0,MMh

g0g1

)
=

1

2
b1hMM + b2hM + V h,

where the coefficients b1 and b2 and the potential V are given by

b1 =
α

α+ 1

1

g1
,

b2 =
2α+ 1

α+ 1
gα1 +

α(α− 1)

α+ 1

g1,M + g0,M

g2
1

,

V =
2α+ 1

α+ 1

gα1 − gα0
g1 − g0

g0,M −
α(α− 1)

α+ 1

(g0 + g1)g2
0,M

g2
0g

2
1

− α

α+ 1

g0,MM

g0g1
.

The parabolic boundary condition of h is

h(Y,M) = A
1

α+1

1 −A
1

α+1

0 =: ψ(M) for Y = 0 or |M | = N . (64)

The functions b1, b2, V , and ψ are smooth and (at least locally) bounded on R+ × [−N,N ], and b1 is bounded
away from zero. Next, take T > 0, M ∈]−N,N [, and let Z be the solution of the stochastic differential equation

dZt =
√
b1(T − t, Zt) dBt + b2(T − t, Zt)dt, Z0 = M, (65)

which is defined up to time
τ := inf

{
t ≥ 0

∣∣ |Zt| = N or t = T
}
. (66)

By a standard Feynman-Kac argument, h can then be represented as

h(T,M) = E
[
ψ(Zτ ) exp

(∫ τ

0

V (T − t, Zt) dt
) ]
. (67)

Hence h ≥ 0 as ψ ≥ 0 by assumption.

Proof of Theorem 5.6. In Theorem 5.7 take u0(x) := u(x) and u1(x) := u(x + r). If u exhibits IARA, then
A1 ≥ A0 if r > 0 and hence ã1 ≥ ã0 = ã. But we clearly have ã1(X,M) = ã(X,M + r). The result for
decreasing A follows by taking r < 0.
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